

Photocatalytic Hydrogen Production by Phthalocyanine based Photocatalyst

Mine Ince

Outline

- Introduction to Hydrogen Energy
- Photocatalytic H₂ Evolution from Water
- Phthalocyanine-based Photocatalytic H₂ Production
- SubPhthalocyanines as Photosensitizers
- Summary&Conclusion

Hydrogen as an Energy Carrier

Hydrogen is an energy carrier, not an energy source!!!

- One of the most abundant element on earth
- Exhibits 3–4 fold higher mass energy density
- Hydrogen fuel cells generate electricity with only water and heat as byproducts

CHEMICAL FEEDSTOCK

Chem. Soc. Rev., 2022, 10.1039/D2CS00183G

Hydrogen as an Energy Carrier

Solar Hydrogen Production

Photocatalytic Water Splitting (Artificial Photosynthesis)

- Simple and clean reaction
- Only a photocatalyst, sunlight and water are required
- The reaction occurs under mild conditions

Chem. Soc. Rev., 2022, 10.1039/D2CS00183G

Dye-Sensitized Photocatalyst for Visible-light-driven H₂ Evolution

e'_

Chem. Soc. Rev., 2022, 10.1039/D2CS00183G

Phthalocyanines

- \triangleright Intense absorption around 700 nm
- High extinction coefficients \geq
- Unusual physical properties (semiconducting, optical...) \triangleright
- \triangleright Thermal, chemical and optical stability
- Structural versatility \triangleright
- Can act both as electron-donors/acceptors \geqslant

The Chemical Record, 2008, 8, 75.

TARSUS

Porfinoids Based Sensitizers for Photocatalytic H₂ evolution

ACS Applied Energy Materials, 2021, 4, 10042.

J. Photochem. Photobiol. A, 2020, 392.

Motivation

- Pc sensitized photocatalytic H₂ production has been studied over the years. However, the design of new Pcs for photocatalytic H₂ production still needs some improvements.
- With this motivation, our research has focused on preparation of novel Pc derivatives as sensitizers in dyesensitized photocatalytic H₂ generation. Within our molecule design, we aim for better charge transfer properties and improved optoelectronic properties.

Pc Based Photosensitizers for Photocatalytic H₂ Production

Renewable Energy 162 (2020) 1340e1346

Non-aggregated Push-pull Zn(II)Phthalocyanines

- Investigating the effect of sulfur atoms
- Comparing the photocatalytic activity of both sensitizers

TARSUS

Non-aggregated Push-pull Zn(II)Phthalocyanines

- ➤ To shift absorption into NIR region
- Maintaining the minimization of aggregation
- Investigating the effect of the sulfur atom
- Size of peripheral substituents

Published by Prof. Kimura

Sustainable Energy Fuels, 2021, 5, 584.

ZnPc 2

Bulky Electron-donating Thioether Substituted Pc Based DSSCs

PcS18 5%

PcS18

ZnPc 4

Sustainable Energy Fuels, 2021,5, 584-589

Adsorption Thicknes density^a / x10⁴/mol V_{oc}/ mV Time J_{sc} /mA PCE / Dyes FF sb c/h cm-1 % /mm cm-3 1 10.4 7.2+4 24 530 6.2 0.75 2.5 2 11.2 7.2+4 550 7.0 0.75 2.9 48 10.8 3 9.9 7 2+4 24 590 0 76 48 12+5.7 48 586 12.4 0.71 5.2 4 8.8 7.2+4 24 550 9.0 0.73 3.6 5 9 7.2+4 24 580 8.8 0.73 3.7 6 87 7.2+4 24 560 46 0.75 1.9 PcS18 13.6 7.2+4 24 621 11.4 0.70 5.0<u>1</u>2

Bulky electron-donating thioether substituted Pcs based DSSCs

(a) 35

Potential (V vs. NHE)

ZnPc 1/ TiO₂: 1.221 mmol/gh ZnPc 2/ TiO₂/Pt: 0.864 mmol/gh

ZnPc 1/TiO₂/Pt: 5.4 mmol/gh ZnPc 2/TiO₂/Pt: 2.3 mmol/gh

Imidazole Substituted ZnPcs for Photocatalytic H₂ Evolution

ZnPc 3 (TT1)

Chemical Communications, 2021, 57, 9196 - 9199

Imidazole Substituted ZnPcs for Photocatalytic H₂ Evolution

Chemical Communications, 2021, 57, 9196 - 9199

SubPhthalocyanines

16

Subphthalocyanines For DSSCs

SubPc-sensitized TiO₂ Photocatalyst

Dalton Trans., 2020, 49, 12550.

- Non-aggregated bulky phenoxy substituted ZnPc 1/TiO₂/Pt: 5.4 mmol/gh
- Thioether groups can be used to broaden the absorption spectrum without facilitating recombination.
- SubPc derivatives were used for the first time as a sensitizer for photocatalytic H₂ generation. The promising results (SubPc-3/TiO₂/Pt: 2.37mmol /gh) shows their potential as a sensitizer in dye-sensitized photocatalytic hydrogen evolution.
- Despite all the encouraging results, improving Pc-sensitised photocatalysts' efficiency and long-term stability **remains a great challenge** for their practical applications.
- Further works (charge-transfer analysis between dye/semiconductor/co-catalyst/electron donor, stability tests etc.) should be carried out to investigate the relationship between molecular structure and photocatalytic performance.

Thank You For Your Attention

In the field of catalytic chemistry, a key evaluation criterion for the performance of catalyst is the turnover number (TON). The TON is defined as the number of the substrate molecules that react divided by the number of active sites before the catalyst loses its activity completely. The calculation of TON can be described by Equation 8.

$$TON = \frac{\text{mol of produced H}_2}{\text{mol of loaded dye}}$$
$$TON = \frac{2 \times \text{mol of produced H}_2}{\text{mol of loaded dye}}$$

In most reported cases of H_2 evolution by DSPs, the number of active sites is usually considered to be the number of dye molecules, while the number of the substrate molecules that react can be taken to be the number of produced H_2 molecules (also considered to be the number of electrons involved to produce H_2 , which is twice the number of H_2 molecules), then the practical expression is simplified as Equation 9 or 10.

24